Numpy Array Type

Numpy is a fundamental package for scientific computing in Python. It provides a high-performance multidimensional array object, and tools for working with these arrays. One of the key features of Numpy is its N-dimensional array type, ndarray. This article will explore the ndarray in detail, including how to create and manipulate these arrays using Numpy.

1. Introduction to Numpy ndarray

The Numpy ndarray is a grid of values, all of the same type, and is indexed by a tuple of nonnegative integers. The number of dimensions is the rank of the array; the shape of an array is a tuple of integers giving the size of the array along each dimension.

Example 1: Creating a Numpy Array

import numpy as np

# Create a numpy array from a Python list
array_example = np.array([1, 2, 3, 4, 5], dtype=np.int32)
print(array_example)

Output:

Numpy Array Type

Example 2: Creating a Multi-dimensional Array

import numpy as np

# Create a 2D numpy array from a list of lists
array_2d_example = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)
print(array_2d_example)

Output:

Numpy Array Type

2. Data Types in Numpy

Numpy supports a much greater variety of numerical types than Python does. This section covers the most common types used in Numpy arrays.

Example 3: Specifying the Data Type

import numpy as np

# Create an array with data type float
float_array = np.array([1, 2, 3, 4], dtype=np.float64)
print(float_array)

Output:

Numpy Array Type

Example 4: Complex Numbers

import numpy as np

# Create an array of complex numbers
complex_array = np.array([1+2j, 3+4j, 5+6j])
print(complex_array)

Output:

Numpy Array Type

3. Array Attributes

Each array has attributes ndim (the number of dimensions), shape (the size of each dimension), and dtype (the data type of the array).

Example 5: Array Attributes

import numpy as np

# Create a 3D array
array_3d = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
print(array_3d.ndim)  # Number of dimensions
print(array_3d.shape) # Shape of the array
print(array_3d.dtype) # Data type of the array

Output:

Numpy Array Type

4. Indexing and Slicing

Numpy offers several ways to index into arrays.

Example 6: Simple Indexing

import numpy as np

# Create a 2D array
array_indexing = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(array_indexing[1, 2])  # Access the element at row 1, column 2

Output:

Numpy Array Type

Example 7: Slicing

import numpy as np

# Slice elements from the second row
slice_example = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(slice_example[1, :])  # Slice the second row

Output:

Numpy Array Type

5. Reshaping Arrays

Changing the shape of an existing array is a common operation.

Example 8: Reshape an Array

import numpy as np

# Reshape a 1D array to a 2D array with 3 rows and 2 columns
reshape_example = np.array([1, 2, 3, 4, 5, 6])
new_shape = reshape_example.reshape((3, 2))
print(new_shape)

Output:

Numpy Array Type

6. Combining Arrays

Numpy provides several functions to combine arrays.

Example 9: Concatenate Arrays

import numpy as np

# Concatenate two arrays
array1 = np.array([1, 2, 3])
array2 = np.array([4, 5, 6])
concatenated_array = np.concatenate((array1, array2))
print(concatenated_array)

Output:

Numpy Array Type

Example 10: Stacking Arrays

import numpy as np

# Stack arrays vertically
array1 = np.array([1, 2, 3])
array2 = np.array([4, 5, 6])
stacked_array = np.vstack((array1, array2))
print(stacked_array)

Output:

Numpy Array Type

7. Splitting Arrays

Splitting is the opposite of combining arrays.

Example 11: Splitting an Array

import numpy as np

# Split an array into three equally shaped arrays
split_array = np.array([1, 2, 3, 4, 5, 6])
new_arrays = np.split(split_array, 3)
print(new_arrays)

Output:

Numpy Array Type

8. Broadcasting

Broadcasting is a powerful mechanism that allows numpy to work with arrays of different shapes when performing arithmetic operations.

Example 12: Broadcasting Example

import numpy as np

# Add a scalar to a 2D array
broadcast_array = np.array([[1, 2, 3], [4, 5, 6]])
result = broadcast_array + 2
print(result)

Output:

Numpy Array Type

9. Universal Functions (ufunc)

Numpy provides a set of universal functions that operate elementwise on arrays.

Example 13: Universal Function – np.add

import numpy as np

# Use the add ufunc
array1 = np.array([1, 2, 3])
array2 = np.array([4, 5, 6])
added_array = np.add(array1, array2)
print(added_array)

Output:

Numpy Array Type

10. Aggregation Functions

Numpy also provides functions to perform aggregate operations along the array.

Example 14: Sum of Array Elements

import numpy as np

# Compute the sum of all elements in the array
sum_array = np.array([1, 2, 3, 4])
total_sum = np.sum(sum_array)
print(total_sum)

Output:

Numpy Array Type

11. Saving and Loading Arrays

Numpy allows you to save arrays to disk and load them back.

Example 15: Save and Load a Numpy Array

import numpy as np

# Save an array to a binary file in NumPy `.npy` format
array_to_save = np.array([1, 2, 3, 4, 5])
np.save('numpyarray_com.npy', array_to_save)

# Load the array from the file
loaded_array = np.load('numpyarray_com.npy')
print(loaded_array)

Output:

Numpy Array Type

Numpy Array Type Conclusion

This article has covered the basics and some advanced topics related to the Numpy ndarray. Understanding these concepts is crucial for anyone working with numerical data in Python. By mastering the creation, manipulation, and functions of Numpy arrays, you can significantly speed up the data analysis process.

Write A Comment

Pin It